
2nd Reading

June 8, 2016 16:24 WSPC/S0219-1997 152-CCM 1650039

Communications in Contemporary Mathematics
(2016) 1650039 (16 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219199716500395

Asymptotic behavior of the curves in the Fuč́ık spectrum
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for weighted second-order linear ordinary differential equations. We prove a Weyl type
asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some
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1. Introduction

We are interested here in the shape of the curves in the Fuč́ık spectrum for the
following problem {

−u′′ = α m(x)u+ − β n(x)u−, x ∈ (0, L),

u(0) = u(L) = 0,
(1.1)

where (α, β) ∈ R
2
+, and the functions m, n ∈ C[0, L] are positive and bounded

below by some positive constant c. As usual, given a function u we denote u± =
max{0,±u} the positive and negative parts of u.

This problem was introduced in the 1970s by Dancer and Fuč́ık (see [7, 10]),
for constant weights m = n. They were interested in problems with jumping non-
linearities, and they obtained for m, n ≡ 1 that (1.1) has a nontrivial solution
corresponding to (α, β) if and only if:

• α = (π/L)2, for any β ∈ R,
• β = (π/L)2, for any α ∈ R,
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• (α, β) ∈ R
2
+ belong to the following families of hyperbolic-like curves Ck,

Ck :
kπ

2L
√

α
+

kπ

2L
√

β
= 1, k ∈ N even,

C+
k :

(k + 1)π
2L

√
α

+
(k − 1)π
2L

√
β

= 1, k ∈ N odd,

C−
k :

(k − 1)π
2L

√
α

+
(k + 1)π
2L

√
β

= 1, k ∈ N odd.

The existence of similar curves in the spectrum was proved later for nonconstant
weights m �≡ nby Rynne in [14], together with several properties about simplicity
of zeros, monotonicity of the eigenvalues respect to the pair of weights, continuity
and differentiability of the curves, and the asymptotic behavior of the curves when
α or β → ∞. For sign-changing weights, similar results were obtained by Alif and
Gossez, and they can be found in [1, 2].

All these results were generalized for half-linear differential equations involving
the one-dimensional p-Laplacian operator,{

−(|u′|p−2u′)′ = αm(x)|u+|p−2u+ − βn(x)|u−|p−2u−, x ∈ (0, L),

u(0) = u(L) = 0
(1.2)

with different boundary conditions, see for instance [8, Sec. 6.3.3] for the constant
coefficient case, or [4,6] where indefinite weights m, n and different boundary con-
ditions were considered.

By using shooting arguments Rynne proved in [14] that the spectrum of problem
(1.1) can be described as an union of curves

Σ := C±
0 ∪

⋃
k∈N

C±
k .

The curves C±
0 are called the trivial curves since the eigenfunctions does not change

signs. We can write C+
0 = {λm

1 } × R, C−
0 = R × {λn

1}, where λs
1 denotes the first

eigenvalue of problem {
−u′′ = λs(x)u, x ∈ (0, L),

u(0) = u(L) = 0.
(1.3)

The curve C+
k (respectively, C−

k ) corresponds to pairs (α, β) with a nontrivial solu-
tion having k internal zeros and positive (respectively, negative) slope at the origin.
Let us observe that now we have two curves for k even, in the constant coefficient
case both curves coincide but this is not true for general weights.

The curves C+
k are not known for general weights m, n, and only its limit behav-

ior as α or β → ∞ is known. This behavioris related to the sequence of eigenvalues
{λs

k}k∈N of problem (1.3), and we have the following:

• When k ∈ N is even, the curvesC±
k are asymptotic to the line R×λn

k/2 as α → ∞;
and to the line λm

k/2 × R as β → ∞.
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• When k ∈ N is odd, C+
k is asymptotic to the line R× λn

(k−1)/2, and C−
k is asymp-

totic to the line R × λn
(k+1)/2, as α → +∞.

• When k ∈ N is odd, C−
k is asymptotic to the line R× λn

(k+1)/2, and C−
k is asymp-

totic to the line R × λn
(k−1)/2, as α → +∞.

Although in some cases the curves C+
k and C−

k can coincide in one or more points,
in this work we will think of them as different curves. That is, we will consider as
different two eigenfunctions if one of them starts with positive slope, and the other
one start with negative slope.

Our main objective in this work is to give a description of the asymptotic behav-
ior of the curves C±

k . Quantitative bounds of the Fuč́ık spectrum are by far less
common in the literature, and the qualitative description states that they are C1

curves. By using the ideas in [12] it is possible to enclose with an hyperbolic like
curve the region of the plane containing the Fuč́ık eigenpairs whose corresponding
eigenfunctions have k nodal domains. Here, we give explicit asymptotic estimates
of the curves together with an error term, in the spirit of Weyl’s asymptotic of the
Laplacian eigenvalues.

In order to state our results, let us introduce some notations. We denote by Kθ

a symmetric region in the first quadrant (with respect to the line x = y) between
two rays through the origin forming an angle θ ∈ (0, π/2). Moreover, f(k) ∼ g(k)
as k → ∞ means that limk→∞ f(k)/g(k) = 1.

In order to improve the asymptotic estimates, we must impose an additional
condition on the weights, related to the Morrey–Campanato space Lγ,1(0, L).

Definition 1.1. Given γ > 0, we say that the function m satisfies the γ-condition
if m ∈ C[0, L] and there exists two positive constants m1, m2 such that 0 < m1 ≤
m ≤ m2 < ∞ and m ∈ Lγ,1(0, L), the Morrey–Campanato space of functions in
L1(0, L) satisfying ∫

I

|m − mI | ≤ C|I|γ

for any I ⊂ (0, L), where C is a fixed constant and

mI =
1
|I|
∫

I

m(x)dx

is the mean value of m in I.

Observe that, when m is Hölder continuous of order r > 0 and bounded away
from zero, then it satisfies the γ-condition for 0 ≤ γ ≤ 1 + r/2.

Our first result corresponds to the case m = n.

Theorem 1.1. Let Σ be the Fuč́ık spectrum of problem (1.1), and let m ≡ n

be a continuous function in [0, L], bounded below by some positive constant. Let
(α±

k , β±
k ) ∈ C±

k . Given some fixed angle θ ∈ (0, π/2), the curves C±
k have the
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following asymptotic behavior in the region Kθ

1 ∼ πk

2


 (α±

k )−
1
2 + (β±

k )−
1
2∫ L

0

m
1
2 dx




as k → ∞.

For different weights m and n we have the following theorem.

Theorem 1.2. Let Σ be the Fuč́ık spectrum of problem (1.1) where m, n are con-
tinuous functions in [0, L], bounded below by some positive constant. Let (α±

k , β±
k ) ∈

C±
k . Given some fixed angle θ ∈ (0, π/2), the curves C±

k have the following asymp-
totic behavior in the region Kθ

1 ∼ πk

2

(∫ L

0

((α±
k m)−

1
2 + (β±

k n)−
1
2 )−1 dx

)−1

as k → ∞. Moreover, if
(
m− 1

2 +(nt)−
1
2
)−1 satisfies the γ-condition for some γ > 1,

then for all δ ∈ [ 1
γ , 1], we have

1 =
πk

2

(∫ L

0

((α±
k m)−

1
2 + (β±

k n)−
1
2 )−1 dx

)−1

+ O(kδ−1)

as k → ∞.

Remark 1.1. When α±
k = β±

k , and m = n, the pair of curves intersect at an
eigenvalue λk of the Sturm–Liouville problem (1.3) with s ≡ m, and we recover the
well-known asymptotic formula of Weyl,

λk ∼

 πk∫ L

0

m
1
2 dx




2

.

We divide the proof of Theorem 1.2 in several steps. The first step is to fix a
line (λ, tλ) in the first quadrant and to estimate the number of intersections with
the curves in Σ as a function of λ. To this end, we need to study the eigenvalue
problem {

−u′′ = λ(m(x)u+ − tn(x)u−), x ∈ [0, L],

u(0) = u(L) = 0.
(1.4)

These eigenvalues are related to the half-eigenvalues studied for instance in [4, 11].
Observe that only a positive multiple of a solution is itself a solution corresponding
to the same eigenvalue, if a negative multiple is a solution too, we will count this
as a double eigenvalue.

From the description of the Fuč́ık spectrum of problem (1.1), the spectrum of
problem (1.4) consists in a double sequence

0 < λ±
1,t < λ±

2,t < λ±
3,t < · · · < λ±

2k−1,t < λ±
2k,t · · · ↗ ∞ (1.5)
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for each fixed t > 0. Each eigenvalue λ±
2,t has a unique associated eigenfunction,

normalized by ±u′(0) = 1. The eigenfunction corresponding to λ±
k,t has precisely

k nodal domains on (0, L), and k + 1 zeros in [0, L]. Moreover, for t = 1 we have
λ+

k,1 = λ−
k,1.

We introduce the spectral counting function N(λ, t, (0, L)), defined as

N(λ, t, (0, L)) = #{k : λ+
k,t(0, L) ≤ λ} + #{k : λ−

k,t(0, L) ≤ λ}.
We emphasize the dependence of the eigenvalues on the interval, since in order to
count these eigenvalues, we use a bracketing argument comparing them with the
eigenvalues in subintervals. However, since the problem has no variational struc-
ture, we cannot use the Dirichlet–Neumann bracketing of Courant [5]. Moreover,
since the Sturmian oscillation theory does not hold for Fuč́ık eigenvalues, and it
is not true that between two zeros of an eigenfunction there is at least a zero of
any eigenfunction corresponding to a higher eigenvalue, we cannot use a different
bracketing based on the number of zeros nor the Sturm–Liouville theory that can
be found in [13], and we need to prove the following theorem.

Theorem 1.3. Let N(λ, t, (0, L)) be the spectral counting function of problem (1.4)
where m, n are continuous functions in [0, L], bounded below by some positive con-
stant. Let c ∈ (0, L). Then for any fixed t > 0,

N(λ, t, (0, L)) = N(λ, t, (0, c)) + N(λ, t, (c, L)) + O(1)

when λ → ∞.

From Theorem 1.3 we derive the following Weyl type result.

Theorem 1.4. Let N(λ, t, (0, L)) be the spectral counting function on (0, L) of
problem (1.4), where m, n are continuous functions in [0, L], bounded below by some
positive constant. For any fixed t > 0,

N(λ, t, (0, L)) =
4
√

λ

π

∫ L

0

(m− 1
2 + (nt)−

1
2 )−1 dx + o(

√
λ)

as λ → ∞.

Finally, let us show that the error term in Theorem 1.4 can be improved for more
regular weights satisfying the γ-condition introduced in Definition 1.1, following the
ideas in [9].

Theorem 1.5. Suppose that (m− 1
2 + (nt)−

1
2 )−1 satisfies the γ-condition for some

γ > 1. Then for each t > 0 fixed and for all δ ∈ [ 1
γ , 1], we have

N(λ, (0, L)) =
4
√

λ

π

∫ L

0

(m− 1
2 + (nt)−

1
2 )−1 dx + O(λδ/2).

Let us observe that the arguments here can be easily modified and applied to
problem (1.2), and also for other homogeneous boundary conditions. However, those
arguments are strongly dependent on the one-dimensional nature of the problem,
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and we cannot expect an easy generalization to higher dimensional problems where,
on the other hand, several strange phenomena can occur.

The paper is organized as follows. In Sec. 2 we review some necessary facts
about the eigenvalues and we prove the bracketing argument in Theorem 1.3. We
prove Theorems 1.2, 1.4 and 1.5 in Sec. 3. In Sec. 4 we present some numerical
experiments.

2. A Fixed Line

Let us study the distribution of the intersection between Σ and a line β = tα

through the origin for a fixed t > 0. Let us call α = λ and β = tα = tλ, and let us
describe the spectrum of problem (1.4).

We consider first the case of constant weights m and n. Hence, the intersection
Σ ∩ {(λ, tλ) : λ > 0} can be computed explicitly.

Lemma 2.1. Let {λ±
k }k∈N be the eigenvalues of (1.4) with constant weights in

(0, L). Then, for each fixed t > 0, we have

(λ±
k,t)

1
2 =

kπ

2L
(m− 1

2 + (nt)−
1
2 ), k even,

(λ+
k,t)

1
2 =

π

2L
((k + 1)m− 1

2 + (k − 1)(nt)−
1
2 ), k odd,

(λ−
k,t)

1
2 =

π

2L
((k − 1)m− 1

2 + (k + 1)(nt)−
1
2 ), k odd.

(2.1)

We omit the proof since it follows from the explicit formula for the Fuč́ık eigen-
values with constant weights given in Sec. 1.

We are interested now in the spectral counting function N(λ, t, (0, L)) for any
fixed t > 0. In order to prove Theorem 1.3, we review the characterization of the
eigenvalues in terms of the Prüfer angle.

We introduce two auxiliary functions ρ, ϕ and we propose the following Prüfer
type transformation{

u(x) =
√

λm(x) sin(ϕ(x))+ −√λtn(x) sin(ϕ(x))−,

u′(x) = ρ(x) cos(ϕ(x)),
(2.2)

and an straightforward computation shows that ρ(x) and ϕ(x) satisfy the system
of ordinary differential equations

ϕ′(x) =




√
λm(x) +

1
2

m′(x)
m(x)

cos(ϕ(x)) sin(ϕ(x)) if sin(ϕ(x)) ≥ 0,

√
λn(x) +

1
2

n′(x)
n(x)

cos(ϕ(x)) sin(ϕ(x)) if sin(ϕ(x)) < 0,

(2.3)

ρ′(x) =




1
2

m′(x)
m(x)

ρ(x) sin2(ϕ(x)) if sin(ϕ(x)) ≥ 0,

1
2

n′(x)
n(x)

ρ(x) sin2(ϕ(x)) if sin(ϕ(x)) < 0.

(2.4)
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Now, a shooting argument enable us to compute the eigenvalues since the corre-
sponding eigenfunctions have a given number of zeros. The zeros of u depend on the
zeros of sin(ϕ(x)) since the function ρ is strictly positive. Whenever ϕ(x) is an inte-
ger multiple of π, we have ϕ′(x) > 0. Hence, we have the following characterization
of the eigenvalues:

λ+
k = min{λ : ϕ(λ, 0) = 0, ϕ(λ, L) = kπ},

λ−
k = min{λ : ϕ(λ, 0) = π, ϕ(λ, L) = (k + 1)π}.

The next lemma is a version of the well-known Sturm’s Comparison Theorem for
the half-eigenvalues of (1.4), and it is an easy consequence of the previous character-
ization of eigenvalues in terms of the Prüfer transformation, see [14, Theorem 5.3].

Lemma 2.2. Let mi, ni, i = 1, 2, be positive and continuous weights such that
m1 ≥ m2 and n1 ≥ n2, and let us call λ±

k,t(mi, ni) the corresponding half-eigenvalues
of problem (1.4). Then λk,t(m1, n1) ≤ λk,t(m2, n2).

As a consequence, we have the following bound for the Fuč́ık eigenvalues with
two weights in terms of the eigenvalues of a weighted problem.

Lemma 2.3. Let m, n be positive and continuous weights and let us call λ±
k,t(m, n)

the corresponding half-eigenvalues of problem (1.4). Then λk,t(m, n) ≤ µk, where
µk is the kth eigenvalue of the problem:

−v′′ = µ
mnt

m + nt
v,

with zero Dirichlet boundary conditions.

Proof. We have the following inequalities,
mnt

m + nt
≤ mnt

nt
= m,

mnt

m + nt
≤ mnt

m
= nt

and by Lemma 2.2, we have

λ±
k,t(m, n) ≤ λ±

k,t

(
mnt

m + nt
,

mnt

m + nt

)
,

which coincides with µk.

A critical step in the proof of Theorem 1.3 is the following lemma, which is a
consequence of the Sturmian oscillation theory in classical eigenvalue problems.

Lemma 2.4. Let λ > λ+
k,t (respectively, λ > λ−

k,t), and let ϕ(λ, x) be corresponding
to a solution of Eq. (1.4) satisfying u(0) = 0 and u(0+) > 0 (respectively, u(0+) <

0). Then ϕ(λ, L) > kπ (respectively, ϕ(λ, L) > (k + 1)π).

Proof. Let us consider only the case u(0+) > 0, the other one is similar. Let us
denote by {0, x1, . . . , xk−1, L} the zeros of an eigenfunction corresponding to λ+

k,t.
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In the first nodal domain (0, x1) we can apply the classical Sturmian theory, so
the solution u has a first zero at 0, and another zero y1 < x1.

Now, the next zero y2 must be located before x2, or the second nodal domain
starting in y1 strictly contains the interval (x1, x2). However, this is not possible,
since λ+

k < λ and the Sturm–Liouville theory implies that u must have a zero
between x1 and x2.

In much the same way, the nodal domain starting at y2 < x2 cannot contain
the full interval (x2, x3), and applying this argument repeatedly, we obtain that
yk < L.

Finally, since ϕ cannot decrease at a multiple of π, we have ϕ(λ, L) > kπ and
the lemma is proved.

Proof of Theorem 1.3. Let us consider the following auxiliary eigenvalue prob-
lems in (0, c) and (c, L), with the original boundary conditions in 0 and L, and
Neumann boundary conditions at c:{

−u′′ = µ(m(x)u+ − tn(x)u−), x ∈ (0, c),

u(0) = u′(c) = 0,
(2.5)

{
−u′′ = µ(m(x)u+ − tn(x)u−), x ∈ (c, L),

u′(c) = u(L) = 0.
(2.6)

We have two double sequences of eigenvalues {µ±
k,t(0, c)}k≥1, {µ±

k,t(c, L)}k≥1

corresponding to problems (2.5) and (2.6).
Let us fix λ, and there exists some integer n such that

λ−
n−1,t < λ+

n,t ≤ λ < λ+
n+1,t < λ−

n+2,t.

Moreover, let us note that there exist an even integer j such that µ+
j,t(0, c) ≤ λ <

µ+
j+2,t(0, c), and an integer h such that µ+

h,t(c, L) ≤ λ < µ+
h+1,t(c, L).

Observe that λ+
n,t ≤ λ does not implies λ−

n,t ≤ λ, and by using similar arguments
in all the cases we obtain the following bounds:

2n − 1 ≤ N(λ, t, (0, L)) ≤ 2n + 1,

2j − 1 ≤ N(λ, t, (0, c)) ≤ 2(j + 1) + 1,

2h − 1 ≤ N(λ, t, (c, L)) ≤ 2h + 1.

(2.7)

We claim now that

−9 ≤ N(λ, t, (0, L)) − N(λ, t, (0, c)) − N(λ, t, (c, L)) ≤ 11.

The eigenfunctions corresponding to µ+
j,t(0, c) and µ+

h,t(c, L) have j + 1 zeros in
[0, c] and h + 1 in [c, L] respectively. Since both solutions have a zero at c, we have
j + h + 1 zeros in [0, L].

Now, let µ = max{µ+
j,t(0, c), µ+

h,t(c, L)}, and let us solve Eq. (2.3) for λ = µ. We
start the shooting at 0 if µ = µ+

j,t(0, c) with ϕ(µ, 0) = 0, or we solve it backwards

1650039-8

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
E

W
 Y

O
R

K
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/2
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

June 8, 2016 16:24 WSPC/S0219-1997 152-CCM 1650039

Curves in the Fuč́ık spectrum

starting from L if µ = µ+
h,t(c, L) with ϕ(µ, L) = π. Hence, Lemma 2.4 implies that

this solution has at least i + j + 1 zeros in [0, L].
We compare now this solution with the one corresponding to λ+

n+1,t (if µ =
µ+

j,t(0, c)) or the one corresponding to λ−
n+2,t (if µ = µ+

h,t(c, L)). In both cases, we
get

j + h + 1 ≤ n + 3. (2.8)

We can obtain another inequality starting with the eigenfunctions corresponding
to µ+

j+2,t(0, c) and µ+
h+1,t(c, L), they have j + 3 zeros in [0, c] and h + 2 in [c, L],

respectively. Hence, we have j + h + 4 zeros in [0, L]. Comparing as before, by
choosing now µ = min{µ+

j+2,t(0, c), µ+
h+1,t(c, L)}, the corresponding solution has

lower than j +h+4 zeros, and the zeros of the eigenfunctions corresponding to λ+
n,t

or λ−
n−1,t can be bounded below by n. So, we get

n ≤ j + h + 4. (2.9)

Therefore, inequalities (2.8) and (2.9), together with inequalities (2.7) implies
the claim, and the proof is finished.

3. The Proof of the Main Theorems

In this section we prove Theorems 1.2, 1.4 and 1.5. For convenience, we prove first
lower and upper bounds for the eigenvalue counting function, and we introduce the
following notation: given two functions m, n we denote

dt(m, n) = m− 1
2 + (nt)−

1
2 .

Lemma 3.1. Let t > 0 be fixed, and let {λ±
k,t}k∈N be the eigenvalues of prob-

lem (1.4) in (0, L) and suppose that m ≤ m ≤ m, n ≤ n ≤ n. Then

N(λ, t, (0, L)) ≥ 4
√

λL

π
(dt(m, n))−1 − 1,

N(λ, t, (0, L)) ≤ 4
√

λL

π
(dt(m, n))−1 + 2.

Proof. The proof follows as a consequence of the monotonicity of eigenvalues
respect to the weight in Lemma 2.2. For k even we have that

k2π2

4L2
(dt(m, n))2 ≤ λ±

k,t ≤
k2π2

4L2
(dt(m, n))2. (3.1)

Consequently, if we consider only the even curves,

#{λ±
k,t ≤ λ, k even} ≥ #

{
k :

k2π2

4L2
dt(m, n)2 ≤ λ, k even

}
,

#{λ±
k,t ≤ λ, k even} ≤ #

{
k :

k2π2

4L2
dt(m, n)2 ≤ λ, k even

}
.
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Hence, denoting by �x� the largest integer not greater than x, we have

#{λ±
k,t ≤ λ, k even} ≥

⌊
2
√

λL

π
dt(m, n)−1

⌋
,

#{λ±
k,t ≤ λ, k even} ≤

⌊
2
√

λL

π
dt(m, n)−1

⌋
.

The lower bound follows by bounding �x� ≥ x − 1, and the other one follows
since �x� ≤ x and there is a pair of odd curves between two pairs of even curves.
The lemma is proved.

We are ready to prove Theorem 1.4. Essentially, we split (0, L) in finitely many
intervals, and then we apply Theorem 1.3 and Lemma 3.1.

Proof of Theorem 1.4. Let us split (0, L) as

(0, L) =
⋃

1≤j≤J

Ij ,

where Ij ∩ Ik = ∅, and |Ij | = L/J = η. We define

mj = inf
x∈Ij

m(x), mj = sup
x∈Ij

m(x).

Since m and n are continuous functions they are Riemann integrable, and given
any ε > 0, we can choose η > 0 such that

J∑
j=1

η((mj)
− 1

2 + (njt)
− 1

2 )−1 ≥
∫ L

0

(m− 1
2 + (nt)−

1
2 )−1 dx − ε,

J∑
j=1

η((mj)−
1
2 + (njt)−

1
2 )−1 ≤

∫ L

0

(m− 1
2 + (nt)−

1
2 )−1 dx + ε.

From Theorem 1.3 we have that

N(λ, t, (0, L)) =
J∑

j=1

N(λ, t, Ij) + O(J),

and Lemma 3.1 implies

J∑
j=1

N(λ, t, Ij) ≤
J∑

j=1

4η
√

λ

π
((mj)−

1
2 + (njt)−

1
2 )−1 + O(J)

=
4
√

λ

π

(∫ L

0

(m− 1
2 + (nt)−

1
2 )−1 dx + ε

)
+ O(J),

1650039-10
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J∑
j=1

N(λ, t, Ij) ≥
J∑

j=1

4η
√

λ

π
((mj)

− 1
2 + (njt)

− 1
2 )−1 − O(J)

=
4
√

λ

π

(∫ L

0

(m− 1
2 + (nt)−

1
2
)−1

dx − ε

)
− O(J)

and the proof is complete.

Let us prove now Theorem 1.5.

Proof of Theorem 1.5. Let 0 < η < η1 < 0 be fixed, and let us split (0, L) =
∪1≤j≤JIj as before, where Ij ∩ Ik = ∅, |Ij | = L/J = η.

Let us define, for 1 ≤ i ≤ J

ϕ(λ) =
2
√

λ

π

∫ L

0

dt(m, n), ϕ(λ, Ij) =
2η

√
λdIj

π
,

where dIj = |Ij |−1
∫

Ij
dt(m, n).

From Theorem 1.3 we obtain
J∑

j=1

N(λ, t, Ij , dt) − ϕ(λ) − O(J) ≤ N(λ, t, (0, L), dt) − ϕ(λ), (3.2)

N(λ, t, (0, L), dt) − ϕ(λ) ≤
J∑

j=1

N(λ, t, Ij , dt) − ϕ(λ) + O(J). (3.3)

Let us bound the left-hand side of inequality (3.2); we have
J∑

j=1

N(λ, t, Ij , dt) − ϕ(λ) ≤
J∑

j=1

N(λ, t, Ij , dIj ) − ϕ(λ, Ij) +
J∑

j=1

ϕ(λ, Ij) − ϕ(λ)

+
J∑

j=1

N(λ, t, Ij , dt) −
J∑

j=1

N(λ, t, Ij , dIj ).

The first term can be bounded by using Lemma 3.1,
J∑

j=1

|N(λ, t, Ij , dIj ) − ϕ(λ, Ij)| ≤ JML,

where M is the maximum of dt in (0, L).
Rewriting the second term, we can bound it as

J∑
j=1

ϕ(λ, Ij) − ϕ(λ) = π−12
√

λ
J∑

j=1

∫
Ij

(dt − dIj ).

The assumed regularity of the weight and the γ-condition gives
J∑

j=1

ϕ(λ, Ij) − ϕ(λ) = π−1
√

λJc1η
γ .
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The third term can be handled using the monotonicity of the eigenvalues respect
to the weight and the additivity of the eigenvalue counting function, Lemma 3.1
and Theorem 1.3, since dt ≤ dIj + |d − dIj |,

N(λ, t, Ij , dt) ≤ N(λ, t, Ij , dIj ) + N(λ, t, Ij , |dt − dIj |) + O(J),

which gives
J∑

j=1

N(λ, t, Ij , dt) − N(λ, t, Ij , dIj )

≤
J∑

j=1

N(λ, t, Ij , |dt − dIj |) ≤
J∑

j=1

2
√

λ

π

∫
Ij

|dt − dIj | + O(J)

≤ π−12
√

λJηγ + O(J),

we have used the same arguments as above, the regularity of the weight and the
γ-condition.

Collecting terms, and by using that J = Lη−1, we can bound the left-hand side
of (3.2), ∣∣∣∣∣∣

J∑
j=1

N(λ, t, Ij , dt) − ϕ(λ) − O(J)

∣∣∣∣∣∣ ≤ C(
√

ληγ−1 + η−1). (3.4)

In much the same way, we can bound the right-hand side of inequality (3.3),
since we only need to change the constant in the O(J) term, obtaining

J∑
j=1

N(λ, t, Ij , dt) − ϕ(λ) + O(J) ≤ C(
√

ληγ−1 + η−1). (3.5)

Hence, we get from (3.4) and (3.5)

|N(λ, t, (0, L), dt) − ϕ(λ)| ≤ C(
√

ληγ−1 + η−1).

We choose now η = λ−α/2 with 0 < α < 1. We can have
√

ληγ−1 ∼ √
λ

δ
and√

λ
α ∼ √

λ
δ

only for δ ∈ [ 1
γ , 1], and the proof is finished.

By taking λ ∼ λ±
k,t in Theorem 1.4, the following asymptotic behavior of the

eigenvalues is obtained.

Corollary 3.1. Given a fixed t ∈ R, the following asymptotic behavior holds:

(λ±
k,t)

1
2 ∼ πk

2

(∫ L

0

(
m− 1

2 + (tn)−
1
2
)−1

dx

)−1

. (3.6)

It follows by observing that N(λ±
k,t) ∼ 2k.

Remark 3.1. We have obtained a generalization of (2.1). When k is even, we
recover the same formula for constant coefficients. However, for k odd, there is an
error term which is of order O(1).
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Moreover, when m = n, we have

λ
1
2
k,t ∼

kπ

2
(1 + t−

1
2 )
(∫

Ω

m
1
2 dx

)−1

∼ λ
1
2
k (1 + t−

1
2 ),

where λk is the kth eigenvalue of problem (1.3), recovering the classical Weyl’s
asymptotic expression for the eigenvalues of the weighted problem.

We can prove now the asymptotic expression of the curves in the Fuč́ık spectrum.

Proof of Theorem 1.2. Recall that Kθ is a symmetric region in the first quadrant
between two rays through the origin forming an angle θ ∈ (0, π/2). We can rewrite
Eq. (3.6) as

1 ∼ πk

2

(∫ L

0

((λ±
k,tm)−

1
2 + (λ±

k,ttn)−
1
2 )−1 dx

)−1

,

and by calling α±
k = λ±

k,t, β±
k = tλ±

k,t, we obtain the desired asymptotic behavior
of the curves C±

k inside Kθ:

1 ∼ πk

2

(∫
Ω

(
(α±

k m)−
1
2 + (β±

k n)−
1
2
)−1

dx

)−1

as k → ∞.
In order to improve the remainder estimate, let us observe that, for each t fixed,

Eq. (3.6) implies that there exists a constant C(t) such that

λ±
k,t ∼ C(t)k2.

Now, Theorem 1.5 gives

2k = N(λ±
k , (0, L)) =

4
π

∫ L

0

((mλ±
k )−

1
2 + (nλ±

k t)−
1
2 )−1 dx + O(kδ),

which is equivalent to

1 =
πk

2

∫ L

0

((mα±
k )−

1
2 + (nβ±

k )−
1
2 )−1 dx + O(kδ−1),

since α±
k = λ±

k , β±
k = tλ±

k . However, since the constants in the error term depend
on t, we can obtain uniform bounds only for t in a compact interval bounded away
from zero and infinity, that is, the result holds only on cones Kθ not touching the
edges.

The proof is finished.

4. Some Numeric Computations

It is possible to compute the weighted Fuč́ık eigenvalues numerically as in [3], where
Brown and Reichel proposed an algorithm based on Newton’s method, by using the
polar coordinates r, ϕ as in Eq. (2.2), solving the ordinary differential Eq. (2.3).
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Here, we have used a slightly different idea. The following pseudo-code can be
easily implemented, and given two bounds λ∗, λ∗, which can be obtained explicitly
from the formulas for the constant coefficient problem and Lemma 2.2, a bisection
argument computes the eigenvalue in a fixed line of slope t with the desired accuracy
ε. We start with λ = (λ∗ − λ∗)/2, and we solve

ϕ′(x) =
√

λf(x) +
1
2

f ′(x)
f(x)

cos(ϕ(x)) sin(ϕ(x))

alternating between the weights f = m and f = n whenever a multiple of π is
reached. If ϕ = kπ is obtained, we set λ∗ = λ, if we reach the extreme L of the
interval and ϕ(L) < kπ, we set λ∗ = λ; we restart the process until the difference
λ∗ − λ∗ is less than a prefixed tolerance error. Observe that the algorithm bisect
the interval, so the error can be made arbitrarily small.

inputs: k, m, n, t, ε, λ∗, λ∗
**********************

k: number of eigenvalue, m, n: weights, t: slope of the line,

ε: accuracy, λ∗, λ∗: bounds of λk

**********************

while λ∗ − λ∗ > ε

λ = (λ∗ + λ∗)/2

lastzero = 0

for i = 1 to k

if i mod 2 �= 0 then f(x) = m(x) else f(x) = tn(x)

find ϕ(x) by solving (2.3) in (lastzero, 1)

find w such that ϕ(w) = π

lastzero = w

end

if lastzero < 1 then λ∗ = (λ∗ + λ∗)/2 else λ∗ = (λ∗ + λ∗)/2

end

output: λ

(4.1)

Now, in order to compare the asymptotic results with the computed values of the
eigenvalues, we consider problem (1.4) in [0, 1], with the weights m(x) = 1+(x+1)−1

and n(x) = 1 + cos2(2x).
In Table 1 we compute λ+

4,t and tλ+
4,t for different values of t taking ε = 0.0001.

For t → 0 and t → ∞ we can compare with the eigenvalues µ2(m) = 23.44031,
µ2(n) = 29.08.

In Table 2, for a fixed line with t = 30, we compute the value of λ+
k,t for several

values of k by using the algorithm (4.1) and we compare the obtained values with
the asymptotic values obtained in (3.6).
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Table 1. Eigenvalues α = λ+
4,t and β = tλ+

4,t for different
values of t.

t α β

106 23.462 23462114.334
105 23.577 2357747.078
104 23.939 239291.613
103 25.110 25110.064
102 28.994 2899.356
10 43.172 431.716
1 106.483 106.483

10−1 486.812 48.649
10−2 3476.799 34.768
10−3 30800.052 30.800
10−4 295937.669 29.594
10−5 2921329.105 29.213
10−6 29099004.001 29.099

Table 2. Higher eigenvalues in a fixed line with t = 30.

k λ+
k,t (from (3.6)) λ+

k,t (from (4.1)) Relative error

10 211.144 212.299 0.005
50 5285.967 5300.702 0.004
100 21145.257 21132.488 0.0006
200 84503.308 84529.952 0.0003
500 528618.283 528312.203 0.0006
1000 2111447.975 2113248.815 0.0008

Table 3. Values of λ+
28,t for different values of t.

t λ+
28,t (from (3.6)) λ+

28,t (from (4.1)) Relative error

0.1 23294.798 23202.100 0.0039
0.5 7588.970 7550.103 0.0051
1 5124.467 5094.391 0.0058
5 2577.485 2565.027 0.0048
10 2099.903 2090.991 0.0042

1000 1231.067 1226.496 0.0037
100000 1156.209 1152.512 0.0031

Finally, for a fixed value of k = 28, we compare in Table 3 for α the numerical
approximation given by (4.1) and the asymptotic given by (3.6) varying t.
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